Explore Zika virus evolution¶
This tutorial explains how to create a Nextstrain build for the Zika virus. We will first make the build step-by-step using an example data set. Then we will see how to automate this stepwise process by defining a pathogen build script.
If you haven’t already looked at the Quickstart, you may want to skim through that before continuing with this tutorial.
Setup¶
To run this tutorial you’ll need either:
Augur and Auspice installed – see installation instructions here.
the Nextstrain CLI tool – see the quickstart for more info.
You’ll also need to install git
if you don’t have it.
If you used conda to install Augur and Auspice then you’ve already got this inside the “Nextstrain” environment.
Build steps¶
Nextstrain builds typically require the following steps:
Prepare pathogen sequences and metadata
Align sequences
Construct a phylogeny from aligned sequences
Annotate the phylogeny with inferred ancestral pathogen dates, sequences, and traits
Export the annotated phylogeny and corresponding metadata into auspice-readable format
First, download the Zika pathogen build which includes example data and a pathogen build script.
git clone https://github.com/nextstrain/zika-tutorial.git
cd zika-tutorial
Next, if you’re using the conda to install augur & auspice (see above), don’t forget to enter the correct environment, e.g.
conda activate nextstrain
or if you’re using the Nextstrain CLI tool, use it to enter the Nextstrain build environment by running:
nextstrain shell .
Note the dot (.
) as the last argument; it is important and indicates that your current directory (zika-tutorial/
) is the build directory.
Your command prompt will change to indicate you are in the build environment.
(If you want to leave the build environment, run the command exit
.)
Prepare the Sequences¶
A Nextstrain build typically starts with a collection of pathogen sequences in a single FASTA file and a corresponding table of metadata describing those sequences in a tab-delimited text file. For this tutorial, we will use an example data set with a subset of 34 viruses.
Each example virus sequence record looks like the following, with the virus’s strain ID as the sequence name in the header line followed by the virus sequence.
>PAN/CDC_259359_V1_V3/2015
gaatttgaagcgaatgctaacaacagtatcaacaggttttattttggatttggaaacgag
agtttctggtcatgaaaaacccaaaaaagaaatccggaggattccggattgtcaatatgc
taaaacgcggagtagcccgtgtgagcccctttgggggcttgaagaggctgccagccggac
ttctgctgggtcatgggcccatcaggatggtcttggcgattctagcctttttgagattca
Each sequence record’s virus strain ID links to the tab-delimited metadata file by the latter’s strain
field.
The metadata file contains a header of column names followed by one row per virus strain ID in the sequences file.
An example metadata file looks like the following.
strain virus accession date region country division city db segment authors url title journal paper_url
1_0087_PF zika KX447509 2013-12-XX oceania french_polynesia french_polynesia french_polynesia genbank genome Pettersson et al https://www.ncbi.nlm.nih.gov/nuccore/KX447509 How Did Zika Virus Emerge in the Pacific Islands and Latin America? MBio 7 (5), e01239-16 (2016) https://www.ncbi.nlm.nih.gov/pubmed/27729507
1_0181_PF zika KX447512 2013-12-XX oceania french_polynesia french_polynesia french_polynesia genbank genome Pettersson et al https://www.ncbi.nlm.nih.gov/nuccore/KX447512 How Did Zika Virus Emerge in the Pacific Islands and Latin America? MBio 7 (5), e01239-16 (2016) https://www.ncbi.nlm.nih.gov/pubmed/27729507
1_0199_PF zika KX447519 2013-11-XX oceania french_polynesia french_polynesia french_polynesia genbank genome Pettersson et al https://www.ncbi.nlm.nih.gov/nuccore/KX447519 How Did Zika Virus Emerge in the Pacific Islands and Latin America? MBio 7 (5), e01239-16 (2016) https://www.ncbi.nlm.nih.gov/pubmed/27729507
Aedes_aegypti/USA/2016/FL05 zika KY075937 2016-09-09 north_america usa usa usa genbank genome Grubaugh et al https://www.ncbi.nlm.nih.gov/nuccore/KY075937 Genomic epidemiology reveals multiple introductions of Zika virus into the United States Nature (2017) In press https://www.ncbi.nlm.nih.gov/pubmed/28538723
A metadata file must have the following columns:
Strain
Virus
Date
Builds using published data should include the following additional columns, as shown in the example above:
Accession (e.g., NCBI GenBank, EMBL EBI, etc.)
Authors
URL
Title
Journal
Paper_URL
Index the Sequences¶
Precalculate the composition of the sequences (e.g., numbers of nucleotides, gaps, invalid characters, and total sequence length) prior to filtering. The resulting sequence index speeds up subsequent filter steps especially in more complex workflows.
mkdir -p results/
augur index \
--sequences data/sequences.fasta \
--output results/sequence_index.tsv
The first lines in the sequence index look like this.
strain length A C G T N other_IUPAC - ? invalid_nucleotides
PAN/CDC_259359_V1_V3/2015 10771 2952 2379 3142 2298 0 0 0 0 0
COL/FLR_00024/2015 10659 2921 2344 3113 2281 0 0 0 0 0
PRVABC59 10675 2923 2351 3115 2286 0 0 0 0 0
COL/FLR_00008/2015 10659 2924 2344 3110 2281 0 0 0 0 0
Filter the Sequences¶
Filter the parsed sequences and metadata to exclude strains from subsequent analysis and subsample the remaining strains to a fixed number of samples per group.
augur filter \
--sequences data/sequences.fasta \
--sequence-index results/sequence_index.tsv \
--metadata data/metadata.tsv \
--exclude config/dropped_strains.txt \
--output results/filtered.fasta \
--group-by country year month \
--sequences-per-group 20 \
--min-date 2012
Align the Sequences¶
Create a multi-sequence alignment using a custom reference.
After this alignment, columns with gaps in the reference are removed.
Additionally, the --fill-gaps
flag fills gaps in non-reference sequences with “N” characters.
These modifications force all sequences into the same coordinate space as the reference sequence.
augur align \
--sequences results/filtered.fasta \
--reference-sequence config/zika_outgroup.gb \
--output results/aligned.fasta \
--fill-gaps
Now the pathogen sequences are ready for analysis.
Construct the Phylogeny¶
Infer a phylogenetic tree from the multi-sequence alignment.
augur tree \
--alignment results/aligned.fasta \
--output results/tree_raw.nwk
The resulting tree is stored in Newick format. Branch lengths in this tree measure nucleotide divergence.
Get a Time-Resolved Tree¶
Augur can also adjust branch lengths in this tree to position tips by their sample date and infer the most likely time of their ancestors, using TreeTime.
Run the refine
command to apply TreeTime to the original phylogenetic tree and produce a “time tree”.
augur refine \
--tree results/tree_raw.nwk \
--alignment results/aligned.fasta \
--metadata data/metadata.tsv \
--output-tree results/tree.nwk \
--output-node-data results/branch_lengths.json \
--timetree \
--coalescent opt \
--date-confidence \
--date-inference marginal \
--clock-filter-iqd 4
In addition to assigning times to internal nodes, the refine
command filters tips that are likely outliers and assigns confidence intervals to inferred dates.
Branch lengths in the resulting Newick tree measure adjusted nucleotide divergence.
All other data inferred by TreeTime is stored by strain or internal node name in the corresponding JSON file.
Annotate the Phylogeny¶
Reconstruct Ancestral Traits¶
TreeTime can also infer ancestral traits from an existing phylogenetic tree and the metadata annotating each tip of the tree.
The following command infers the region and country of all internal nodes from the time tree and original strain metadata.
As with the refine
command, the resulting JSON output is indexed by strain or internal node name.
augur traits \
--tree results/tree.nwk \
--metadata data/metadata.tsv \
--output-node-data results/traits.json \
--columns region country \
--confidence
Infer Ancestral Sequences¶
Next, infer the ancestral sequence of each internal node and identify any nucleotide mutations on the branches leading to any node in the tree.
augur ancestral \
--tree results/tree.nwk \
--alignment results/aligned.fasta \
--output-node-data results/nt_muts.json \
--inference joint
Identify Amino-Acid Mutations¶
Identify amino acid mutations from the nucleotide mutations and a reference sequence with gene coordinate annotations.
The resulting JSON file contains amino acid mutations indexed by strain or internal node name and by gene name.
To export a FASTA file with the complete amino acid translations for each gene from each node’s sequence, specify the --alignment-output
parameter in the form of results/aligned_aa_%GENE.fasta
.
augur translate \
--tree results/tree.nwk \
--ancestral-sequences results/nt_muts.json \
--reference-sequence config/zika_outgroup.gb \
--output-node-data results/aa_muts.json
Export the Results¶
Finally, collect all node annotations and metadata and export it in Auspice’s JSON format.
This refers to three config files to define colors via config/colors.tsv
, latitude and longitude coordinates via config/lat_longs.tsv
, as well as page title, maintainer, filters present, etc., via config/auspice_config.json
.
The resulting tree and metadata JSON files are the inputs to the Auspice visualization tool.
augur export v2 \
--tree results/tree.nwk \
--metadata data/metadata.tsv \
--node-data results/branch_lengths.json \
results/traits.json \
results/nt_muts.json \
results/aa_muts.json \
--colors config/colors.tsv \
--lat-longs config/lat_longs.tsv \
--auspice-config config/auspice_config.json \
--output auspice/zika.json
Visualize the Results¶
If you entered the Nextstrain build environment using nextstrain shell
at the beginning of this tutorial, leave it now using the exit
command and then use nextstrain view
to visualize the Zika build output in auspice/*.json
.
# Leave the shell you entered earlier.
exit
# View results in your auspice/ directory.
nextstrain view auspice/
If you’re not using the Nextstrain CLI shell, start auspice to view the dataset in the Zika build output directory.
auspice view --datasetDir auspice
When Auspice is running, navigate to http://localhost:4000/local/zika in your browser to view the results.
To stop Auspice and return to the command line when you are done viewing your data, press CTRL+C.
Automate the Build with Snakemake¶
While it is instructive to run all of the above commands manually, it is more practical to automate their execution with a single script.
Nextstrain implements these automated pathogen builds with Snakemake by defining a Snakefile
like the one in the Zika repository you downloaded.
First delete the output from the manual steps above.
(Be sure to navigate into the zika-tutorial/
directory first.)
rm -rf results/ auspice/
If you’ve installed Augur & Auspice, simply run
snakemake --cores 1
or, if you’re using the Nextstrain CLI tool, run:
nextstrain build --cpus 1 .
which will run the automated pathogen build. This runs all of the manual steps above up through the auspice export. View the results the same way you did before to confirm it produced the same Zika build you made manually.
Note that automated builds will only re-run steps when the data changes.
This means builds will pick up where they left off if they are restarted after being interrupted.
If you want to force a re-run of the whole build, first remove any previous output with snakemake --cores 1 clean
or nextstrain build --cpus 1 . clean
.
Next steps¶
Learn more about Augur commands.
Learn more about Auspice visualizations.
Fork the Zika tutorial pathogen repository on GitHub, modify the Snakefile to make your own pathogen build, and learn how to contribute to nextstrain.org.